MATLAB®
Function Reference

it
y

MATLAB

R2019%a =) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB Function Reference
© COPYRIGHT 1984-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

December 1996
June 1997
October 1997
January 1999
June 1999

June 2001

July 2002

June 2004
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015

March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019

First printing
Online only
Online only
Online only
Second printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Online only
Online only
Online only
Online only
Online only
Online only
Online only

For MATLAB 5.0 (Release 8)

Revised for MATLAB 5.1 (Release 9)
Revised for MATLAB 5.2 (Release 10)
Revised for MATLAB 5.3 (Release 11)
For MATLAB 5.3 (Release 11)

Revised for MATLAB 6.1 (Release 12.1)
Revised for 6.5 (Release 13)

Revised for 7.0 (Release 14)

Revised for 7.3 (Release 2006b)

Revised for 7.4 (Release 2007a)

Revised for Version 7.5 (Release 2007b)
Revised for Version 7.6 (Release 2008a)
Revised for Version 7.7 (Release 2008b)
Revised for Version 7.8 (Release 2009a)
Revised for Version 7.9 (Release 2009b)
Revised for Version 7.10 (Release 2010a)
Revised for Version 7.11 (Release 2010b)
Revised for Version 7.12 (Release 2011a)
Revised for Version 7.13 (Release 2011b)
Revised for Version 7.14 (Release 2012a)
Revised for Version 8.0 (Release 2012b)
Revised for Version 8.1 (Release 2013a)
Revised for Version 8.2 (Release 2013b)
Revised for Version 8.3 (Release 2014a)
Revised for Version 8.4 (Release 2014b)
Revised for Version 8.5 (Release 2015a)
Revised for Version 8.6 (Release 2015b)
Rereleased for Version 8.5.1 (Release
2015aSP1)

Revised for Version 9.0 (Release 2016a)
Revised for Version 9.1 (Release 2016b)
Revised for Version 9.2 (Release 2017a)
Revised for Version 9.3 (Release 2017b)
Revised for Version 9.4 (Release 2018a)
Revised for Version 9.5 (Release 2018b)
Revised for Version 9.6 (Release 2019a)

Alphabetical List

1]

Alphabetical List

1 Alphabetical List

1-2

Logical Operators: Short-Circuit && ||

Logical operations with short-circuiting

Syntax

exprl && expr2
exprl || expr2

Description

exprl && expr2 represents a logical AND operation that employs short-circuiting
behavior on page 1-4. That is, expr2 is not evaluated if exprl is logical 0 (false).
Each expression must evaluate to a scalar logical result.

exprl || expr2 represents a logical OR operation that employs short-circuiting

behavior on page 1-4. That is, expr2 is not evaluated if exprl is logical 1 (true). Each
expression must evaluate to a scalar logical result.

Examples

Use Scalar Logical Conditions

Create two vectors.

X
Y

[10011];
[0000 0];
Using the short-circuit OR operator with X and Y returns an error. The short-circuit

operators operate only with scalar logical conditions.

Use the any and all functions to reduce each vector to a single logical condition.

any(X) || any(Y)

Logical Operators: Short-Circuit && ||

ans = logical
1

The expression is equivalent to 1 OR 0, so it evaluates to logical 1 (true) after
computing only the first condition, any (X).

Specify Dependent Logical Conditions

Specify a logical statement where the second condition depends on the first. In the
following statement, it doesn't make sense to evaluate the relation on the right if the
divisor, b, is zero.

b =1;
a = 20;
x = (b ~=0) & (a/b > 18.5)
x = logical
1

The result is logical 1 (true). However, if (b ~= 0) evaluates to false, MATLAB®
assumes the entire expression to be false and terminates its evaluation of the
expression early.

Specify b = 0 and evaluate the same expression.

b =0;
x = (b ~=0) & (a/b > 18.5)
x = logical

0

The result is logical 0 (false). The first statement evaluates to logical 0 (false), so the
expression short-circuits.

1-3

1 Alphabetical List

1-4

Change Structure Field Value

Create a structure with fields named 'File' and 'Format'.
S = struct('File',{'myGraph'}, 'Format',[])

S = struct with fields:
File: 'myGraph'
Format: []

Short-circuit expressions are useful in if statements when you want multiple conditions
to be true. The conditions can build on one another in such a way that it only makes sense
to evaluate the second expression if the first expression is true.

Specify an if statement that executes only when S contains an empty field named
"Format'.

if isfield(S, 'Format') && isempty(S.Format)
S.Format = '.png';

end

S

S = struct with fields:
File: 'myGraph'
Format: '.png'

The first condition tests if ' Format' is the name of a field in structure S. The second
statement then tests whether the Format field is empty. The truth of the second condition
depends on the first. The second condition can never be true if the first condition is not
true. Since S has an empty field named 'Format', the body statement executes and
assigns S.Format the value '.png"'.

Definitions

Logical Short-Circuiting

With logical short-circuiting, the second operand, expr2, is evaluated only when the
result is not fully determined by the first operand, exprl.

Logical Operators: Short-Circuit && ||

Due to the properties of logical AND and OR, the result of a logical expression is
sometimes fully determined before evaluating all of the conditions. The logical and
operator returns logical 0 (false) if even a single condition in the expression is false. The
logical or operator returns logical 1 (true) if even a single condition in the expression is
true. When the evaluation of a logical expression terminates early by encountering one of
these values, the expression is said to have short-circuited.

For example, in the expression A && B, MATLAB does not evaluate condition B at all if
condition A is false. If A is false, then the value of B does not change the outcome of the
operation.

When you use the element-wise & and | operators in the context of an if or while loop
expression (and only in that context), they use short-circuiting to evaluate expressions.

Note Always use the && and | | operators to enable short-circuit evaluation. Using the &
and | operators for short-circuiting can yield unexpected results when the expressions do
not evaluate to logical scalars.

See Also

all|and|any| false| find | logical | or | true | xor
Topics
“Reduce Logical Arrays to Single Value”

“MATLAB Operators and Special Characters”

Introduced before R2006a

1-5

1 Alphabetical List

colon, :

Vector creation, array subscripting, and for-loop iteration

The colon is one of the most useful operators in MATLAB. It can create vectors, subscript
arrays, and specify for iterations.

Syntax

x = j:k

X
1l
.
;_.'
=

A(j:k)

Description

X = j:K creates a unit-spaced vector x with elements [j,j+1,j+2,...,j+m] wherem
fix(k-j).If j and k are both integers, then this is simply [j, j+1,...,Kk].

X = j:1i:k creates a regularly-spaced vector x using i as the increment between
elements. The vector elements are roughly equal to [, j+i,j+2*1i,...,j+m*1i] where
m = fix((k-j)/i). However if i is not an integer, then floating point arithmetic plays
a role in determining whether colon includes the endpoint k in the vector, since k might
not be exactly equal to j+m*1i. If you specify nonscalar arrays, then MATLAB interprets
jrizkas j(1):1i(1):k(1).

x = colon(j,k) and x = colon(j,1i,k) are alternate ways to execute the commands
j:kand j:i:k, but are rarely used. These syntaxes enable operator overloading for
classes.

A(:,n),A(m,:),A(:),and A(j:k) are common indexing expressions for a matrix A
that contain a colon. When you use a colon as a subscript in an indexing expression, such

1-6

colon, :

as A(:,n), it acts as shorthand to include all subscripts in a particular array dimension.
It is also common to create a vector with a colon for the purposes of indexing, such as
A(j:k). Some indexing expressions combine both uses of the colon, asin A(:,j:K).

Common indexing expressions that contain a colon are:

A(:,n) is the nth column of matrix A.
* A(m, :) is the mth row of matrix A.
. A(

:,:,Pp) is the pth page of three-dimensional array A.

* A(:) reshapes all elements of A into a single column vector. This has no effect if A is
already a column vector.

* A(:,:) reshapes all elements of A into a two-dimensional matrix. This has no effect if
A is already a matrix or vector.

* A(j:k) uses the vector j:k to index into A and is therefore equivalent to the vector
[A(j), A(j+1), ..., A(K)].

* A(:,]j:k) includes all subscripts in the first dimension but uses the vector j : k to
index in the second dimension. This returns a matrix with columns [A(:,]j), A(:,]
+1), ..., A(:,k)].

Examples

Create Unit-Spaced Vector

Create a unit-spaced vector of numbers between 1 and 10. The colon operator uses a
default increment of +1.

X =1:10
X = 1x10

Create Vector with Specified Increment

Create vectors that increment or decrement by a specified value.

1-7

1 Alphabetical List

Create a vector whose elements increment by 0.1.

X 0:0.1:1

X Ix11

0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.

Create a vector whose elements decrement by -2.

y = 10:-2:0
y = Ix6
10 8 6 4 2 0

Index Matrix Rows and Columns
Examine several ways to index a matrix using a colon :.

Create a 3-by-3 matrix. Index the first row.

A = magic(3)
A = 3x3
8 1 6
3 5 7
4 9 2
A(l,:)
ans = 1Ix3
8 1 6

Index the second and third column.

A(:,2:3)

1-8

colon, :

ans = 3x2
1 6
5 7
9 2

Reshape the matrix into a column vector.
A(:)

ans = 9x1

NNOOOU R B~WOo

Specify for-loop Iterations
In the context of a for-loop, the colon specifies the loop iterations.

Write a for-loop that squares a number for values of n between 1 and 4.

for n = 1:4
n"2

end

ans =1

ans = 4

ans = 9

ans = 16

1-9

1 Alphabetical List

1-10

Input Arguments

j — Starting vector value
scalar

Starting vector value, specified as a real numeric scalar. If j < k so that the output
vector is not empty, then j is the first element in the vector.

Example: x = 0:5

Example: x = 0:0.5:5

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | datetime | duration

k — Ending vector value
scalar

Ending vector value, specified as a real numeric scalar. k is the last value in the vector
only when the increment lines up to exactly land on k. For example, the vector 0:5
includes 5 as the last value, but 0:0.3:1 does not include the value 1 as the last value
since the increment does not line up with the endpoint.

Example: x = 0:5

Example: x = 0:0.5:5

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | datetime | duration

1 — Increment between vector elements
1 (default) | scalar

Increment between vector elements, specified as a real numeric scalar.
Example: x = 0:0.5:5

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | datetime | duration

Output Arguments

x — Regularly-spaced vector
row vector

colon, :

Regularly-spaced vector, returned as a row vector. If j > k, then x = j:kis an empty
matrix. More generally, the syntax x = j:1i:k returns an empty matrix when:

* 1, j,or kisanempty input

o i ==

* i>0andj > k

e i<0andj < k

Tips
* The for reference page has a description of how to use : in the context of loop
statements.

* linspace is similar to the colon operator :, but it gives direct control over the
number of points and always includes the endpoints. The sibling function Logspace
generates logarithmically spaced values.

* When you create a vector to index into a cell array or structure array (such as
cellName{:} or structName(:).fieldName), MATLAB returns multiple outputs in
a comma-separated list. For more information, see “How to Use the Comma-Separated
Lists”.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with some limitations. For more information, see “Index
and View Tall Array Elements”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1-11

1 Alphabetical List

1-12

* Complex inputs are not supported.

* The input i cannot have a logical value.

* Vector inputs are not supported.

* Inputs must be constants.

» Uses single-precision arithmetic to produce single-precision results.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:
* You can build the GPU array equivalent to A:B or A:D:B in this way:

gpuArray.colon(A,B)

C
C gpuArray.colon(A,D,B)

You can also pass GPU arrays directly to the colon operator (A:D:B).
* 64-bit integers are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays

Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

Usage notes and limitations:

» The colon operator is not supported. Instead, build the distributed array equivalent to
A:Bor A:D:Bin this way:

C
C

distributed.colon(A,B)
D,

distributed.colon(A,D,B)

For more information, see “Run MATLAB Functions with Distributed Arrays” (Parallel
Computing Toolbox).

colon, :

See Also

for | linspace | logspace | reshape | varargin

Topics

“Generate Sequence of Dates and Time”
“MATLAB Operators and Special Characters”
“Array Indexing”

Introduced before R2006a

1-13

1 Alphabetical List

abs

Absolute value and complex magnitude

Syntax

Y = abs(X)

Description

Y = abs(X) returns the absolute value on page 1-16 of each element in array X.

If X is complex, abs (X) returns the complex magnitude on page 1-16.

Examples

Absolute Value of Scalar
y = abs(-5)

y =>5

Absolute Value of Vector

Create a numeric vector of real values.
x =[1.3 -3.56 8.23 -5 -0.01]"

X = 5x1

1.3000
-3.5600
8.2300
-5.0000

1-14

abs

-0.0100

Find the absolute value of the elements of the vector.
y = abs(x)
y = 5x1

1.3000
3.5600
8.2300
5.0000
0.0100

Magnitude of Complex Number
y = abs(3+41)

y =5

Input Arguments

X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. If X is
complex, then it must be a single or double array. The size and data type of the output
array is the same as the input array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | duration

1-15

1 Alphabetical List

1-16

Definitions

Absolute Value

The absolute value (or modulus) of a real number is the corresponding nonnegative value
that disregards the sign.

For a real value, a, the absolute value is:

* g, if a is greater than or equal to zero
* -3, if ais less than zero

abs (-0) returns 0.

Complex Magnitude

The complex magnitude (or modulus) is the length of a vector from the origin to a
complex value plotted in the complex plane.

For a complex value, |a + bi| is defined as ya? + b2,

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

’

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

abs

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays

Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also

angle | hypot | imag | norm | real | sign | unwrap

Introduced before R2006a

1-17

1 Alphabetical List

1-18

accumarray

Construct array with accumulation

Syntax

accumarray(subs,val)

accumarray(subs,val,sz)
accumarray(subs,val,sz, fun)
accumarray(subs,val,sz,fun,fillval)
accumarray(subs,val,sz,fun,fillval,issparse)

>> > >
| LI | 1 [||

Description

A = accumarray(subs,val) returns array A by accumulating elements on page 1-30
of vector val using the subscripts subs. If subs is a column vector, then each element
defines a corresponding subscript in the output, which is also a column vector. The
accumarray function collects all elements of val that have identical subscripts in subs
and stores their sum in the location of A corresponding to that subscript (for index i,
A(i)=sum(val(subs(:)==1i))). Elements of A whose subscripts do not appear in subs
are equal to 0.

For an m-by-n matrix subs, each row represents an n-dimensional subscript into output A.
The ith row of subs corresponds to the ith element in the vector val.

A = accumarray(subs,val,sz) returns an array, A, with size sz. Specify sz as a
vector of positive integers to define the size of the output, or as [] to let the subscripts in
subs determine the size of the output. Use sz when subs does not reference trailing
rows, columns, or dimensions that you would like to be present in the output.

A = accumarray(subs,val, sz, fun) applies the function fun to each subset of
elements in val that have identical subscripts in subs. Specify fun using the @ symbol
(e.g., @mean), or as [] to use the default function, @sum.

A = accumarray(subs,val,sz, fun,fillval) fills all elements of A that are not
referred to by any subscript in subs with the scalar value, fillval. The fillval input

accumarray

must have the same class as the values returned by fun. Specify fillval as [] to use
the default value, 0.

A = accumarray(subs,val,sz,fun,fillval,issparse) returns an array, A, that is
sparse if the scalar issparseis true or 1, and full if issparse is false or 0. The
output, A, is full by default.

Examples

Find Bin Counts

Create a vector of subscripts, subs.
subs = [1; 2; 4; 2; 4]

subs = 5x1

ANANRE

Use accumarray with val = 1 to count the number of identical subscripts in subs.

A

accumarray(subs,1)

A = 4x1

NONK

The result is a vector of bin counts. You can obtain the same answer with
histcounts(subs, 'BinMethod', 'integers'). However, accumarray also can
compute bin counts over higher dimensional grids.

1-19

1 Alphabetical List

1-20

Accumulate Data

Create a vector of data, val, and a vector of subscript values with the same length, subs.

val = 101:105";
subs = [1; 3; 4; 3; 4]

subs = 5x1

~APWPAr,WE

Use accumarray to sum the values in val that have identical subscripts in subs.

A

accumarray(subs,val)

A = 4x1

101

0
206
208

The result is a vector of accumulated values. Since the second and fourth elements of
subs are equal to 3, A(3) is the sum of the second and fourth elements of val, that is,
A(3) = 102 + 104 = 206. Also, A(2) = 0 because subs does not contain the value 2.
Since subs is a vector, the output, A, is also a vector. The length of A is max (subs,
[1,1).

Specify Output Size
Create a vector of data, val, and a matrix of subscripts, subs.

val = 101:106"';
subs = [11; 22; 32; 11; 22; 4 1]

subs = 6x2

accumarray

ANEFEFWNR
RFNRFRENNRF

The subscripts in subs define a 4-by-2 matrix for the output.

Use accumarray to sum the values in val that have identical subscripts in subs.

A = accumarray(subs,val)

A = 4x2
205 0
0 207
0 103
106 0

The result is a 4-by-2 matrix of accumulated values.

Use the sz input of accumarray to return a 4-by-4 matrix. You can specify a size with
each dimension equal to or greater than the default size, in this case 4-by-2, but not
smaller.

A = accumarray(subs,val,[4 4])
A = 4x4
205 0 0 0
0 207 0 0
0 103 0 0
106 0 0 0

The result is a 4-by-4 matrix of accumulated values.

Use Custom Functions

Create a vector of data, val, and a matrix of subscripts, subs.

1-21

1 Alphabetical List

1-22

val = [100.1 101.2 103.4 102.8 100.9 101.5]';
subs = [11; 11; 22; 32; 22; 32]

subs = 6x2

WNWNRFE R
NNNNRF R

The subscripts in subs define a 3-by-2 matrix for the output.

Use the fun input of accumarray to calculate the within-group variances of data in val
that have identical subscripts in subs. Specify fun as @var.

Al = accumarray(subs,val,[],@var)
Al = 3x2
0.6050 0
0 3.1250
0 0.8450

The result is a 3-by-2 matrix of variance values.

Alternatively, you can specify fun as an anonymous function so long as it accepts vector
inputs and returns a scalar. A common situation where this is useful is when you want to
pass additional parameters to a function. In this case, use the var function with a
normalization parameter.

A2 = accumarray(subs,val,[],@(x) var(x,1))

A2 = 3x2
0.3025 0
0 1.5625
0 0.4225

The result is a 3-by-2 matrix of normalized variance values.

accumarray

Sum Values Natively

Create a vector of data, val, and a matrix of subscripts, subs.

val = int8(10:15);
subs = [111; 111;112;112;231; 23 2]

subs = 6x3
1 1 1
1 1 1
1 1 2
1 1 2
2 3 1
2 3 2

The subscripts in subs define a 2-by-3-by-2 multidimensional array for the output.

Use accumarray to sum the data values in val that have identical subscripts in subs.
You can use a function handle to sum the values in their native, int8, integer class by
using the 'native' option of the sum function.

A = accumarray(subs,val,[],@(x) sum(x, 'native'))

A = 2x3x2 int8 array
A(:,:,1) =

21 0 0

0 0 14
A(:,:,2) =

25 0 0

0 0 15

The result is a 2-by-3-by-2 multidimensional array of class int8.

1-23

1 Alphabetical List

Group Values in Cell Array

Create a vector of data, val, and a matrix of subscripts, subs.

val = 1:10;
subs = [1 1;1 1;1 1;1 1;2 1;2 1;2 1;2 1;2 1;2 2]

subs = 10x2

NNNNNNRRF R
N R R R R

The subscripts in subs define a 2-by-2 matrix for the output.

Use accumarray to group the elements of val into a cell array.
A = accumarray(subs,val,[],@(x) {x})

A = 2x2 cell array
{4x1 double} {0x0 double}
{5x1 double} {I[101}

The result is a 2-by-2 cell array.

Verify that the vector elements are in the same order as they appear in val.
A{2,1}

ans = 5x1

O 00N WU

1-24

accumarray

Since the subscripts in subs are sorted, the elements of the numeric vectors in the cell
array are in the same order as they appear in val.

Using Functions That Depend on Data Order

Create a vector of data, val, and a matrix of subscripts, subs.

val = 1:5;
subs = [12; 11; 12; 11; 2 3]

N R R
WHENRN

The subscripts in subs define a 2-by-3 matrix for the output, but are unsorted with
respect to the linear indices in the output, A.

Group the values in val into a cell array by specifying fun = @(x) {x}.

A

accumarray(subs,val,[],@(x) {x})

A:
2x3 cell array

[2x1 double] [2x1 double] []
[] [] [5]

The result is a 2-by-3 cell array.

Examine the vector in A{1,2}.

A{1,2}

1-25

1 Alphabetical List

1-26

The elements of the A{1, 2} vector are in a different order than in val. The first element
of the vector is 3 instead of 1. If the subscripts in subs are not sorted with respect to
their linear indices, then accumarray might not always preserve the order of the data in
val when it passes them to fun. In the unusual case that fun requires that its input
values be in the same order as they appear in val, sort the indices in subs with respect
to the linear indices of the output.

In this case, use the sortrows function with two inputs and two outputs to reorder subs
and val concurrently with respect to the linear indices of the output.

[S,I] = sortrows(subs,[2,1]);
A = accumarray(S,val(I),[]1,@(x) {x});

A{1,2}
ans =
1
3

The elements of the A{1, 2} vector are now in sorted order.

Fill Output with NaN Values

Create a vector of data, val, and a matrix of subscripts, subs.

val = 101:106"';
subs = [11; 2 2; 33;11; 2 2; 4 4]

subs = 6x2

= WN e
= WN R

accumarray

The subscripts in subs define a 4-by-4 matrix for the output, but only reference 4 out of
the 16 elements. By default, the other 12 elements are 0 in the output.

Use the fillval input of accumarray to fill in the extra output elements with NaN
values.

A

accumarray(subs,val,[]1,[],NaN)

A = 4x4

205 NaN NaN NaN
NaN 207 NaN NaN
NaN NaN 103 NaN
NaN NaN NaN 106

The result is a 4-by-4 matrix padded with NaN values.

Change Output Sparsity

Create a vector of data, val, and a matrix of subscripts, subs.

val = [34 22 19 85 53 77 99 6];
subs = [1 1; 400 400; 80 80; 1 1; 400 400; 400 400; 80 80; 1 1]

subs = 8x2

1 1

400 400

80 80

1 1

400 400
400 400

80 80

1 1

The subscripts in subs define a 400-by-400 matrix for the output, but only reference 3 out
of the 160,000 elements. When the result of an operation with accumarray leads to a

1-27

1 Alphabetical List

1-28

large output array with low density of nonzero elements, you can save storage space by
storing the output as a sparse matrix.

Use the issparse input of accumarray to return a sparse matrix.

A = accumarray(subs,val,[],[]1,[],true)
A =

(1,1) 125

(80,80) 118

(400,400) 152

The result is a sparse matrix. You can obtain the same answer with
sparse(subs(:,1),subs(:,2),val).

Input Arguments

subs — Subscript matrix
vector of indices | matrix of indices | cell array of index vectors

Subscript matrix, specified as a vector of indices, matrix of indices, or cell array of index
vectors. The indices must be positive integers:

* The value in each row of the m-by-n matrix, subs, specifies an n-dimensional index
into the output, A. For example, if subs is a 3-by-2 matrix, it contains three 2-D
subscripts. subs also can be a column vector of indices, in which case the output, A, is
also a column vector.

* The ith row in subs corresponds to the ith data value in val.
» If subs is empty, then the accumarray function errors.
Thus, subs determines which data in val to group, as well as its final destination in the

output. If subs is a cell array of index vectors, each vector must have the same length,
and the function treats the vectors as columns of a subscript matrix.

val — Data
vector | scalar

Data, specified as a vector or scalar:

accumarray

« Ifvalis a vector, it must have the same length as the number of rows in subs.
» Ifvalisa scalar, it is scalar expanded.

In both cases, a one-to-one pairing is present between the subscripts in each row of subs
and the data values in val.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 |
uint32 | uint64 | logical | char
Complex Number Support: Yes

sz — Size of output array
[1 (default) | vector of positive integers

Size of output array, specified as a vector of positive integers or [] (default). When you
specify [] for the default size, the values in subs determine the size of the output array,
A

When you specify sz as a vector of positive integers, it must satisfy these properties:

* If subs is a nonempty m-by-n matrix with n > 1 columns, then sz must have n
elements and pass the logical test all(sz >= max(subs,[1,1)).

* If subs is a nonempty column vector, then sz must be [m 1] wherem >=
max (subs).

Example: sz = [3 3]

fun — Function
[1 (default) | function handle

Function, specified as a function handle or [] (default). The default function is @sum. The
fun function must accept a column vector and return a numeric, logical, or char
scalar, or a scalar cell. If the subscripts in subs are not sorted with respect to their
linear indices, fun should not depend on the order of the values in its input data. For
more information on function handles, see “Create Function Handle”.

Example: fun = @max

Data Types: function handle

fillval — Fill value
[1 (default) | scalar

Fill value, specified as a scalar or [] (default). The default value of fillval is 0. If subs
does not reference each element in the output, accumarray fills in the output with the

1-29

1 Alphabetical List

1-30

value specified by fillval. The class of fillval must be the same as the values
returned by fun.

issparse — Output sparsity
false or O (default) | trueor 1

Output sparsity, specified as a numeric or logical 1 (true) or 0 (false). Specify true or
1 when you want the output array to be sparse. If issparseis true or 1:

o« fillvalmustbeOor[].

* The values in val and the output values of fun must both have type double.

Output Arguments

A — Output array
vector | matrix | multidimensional array

Output array, returned as a vector, matrix, or multidimensional array. A has the same class
as the values returned by fun.

When sz is not specified, the size of A depends on the input subs:
* If subs is a nonempty matrix with n > 1 columns, then A is an n-dimensional array of

size max(subs,[],1).

* If subs is an empty matrix with n > 1 columns, then A is an n-dimensional empty
array with size 0-by-0-by-...-by-O0.

* If subs is a nonempty column vector, then A is a column vector of length max (subs,
[1,1). The length of A is @ when subs is empty.

Definitions

Accumulating Elements

The following graphic illustrates the behavior of accumarray on a vector of temperature
data taken over a 12-month period. To find the maximum temperature reading for each
month, accumarray applies the max function to each group of values in temperature
that have identical subscripts in month.

accumarray

month temperature maxTemnp
1 57
1 61 [> max([57,61,59])
2 60 max([60])
3 62 max ([62,64,61])
8 45 max ([66,64])
[1 59 0
3 64 0
4 66 0
[9 40 |* max ([45])
11 56 max ([40,38])
9 38 "
12 65 max ([56,55])
3 61 \ max ([65])
4 64
11 55
1
Vv
maxTemp = accumarray(subs,val,[],fmax)

No values in month point to the 5, 6, 7, or 10 positions of the output. These elements are
0 in the output by default, but you can specify a value to fill in using fillval.

Tips

* The behavior of accumarray is similar to that of the histcounts function. Both
functions group data into bins.

* histcounts groups continuous values into a 1-D range using bin edges.
accumarray groups data using n-dimensional subscripts.

* histcounts returns the bin counts and/or bin placement. However, accumarray
can apply any function to the binned data.

You can mimic the behavior of histcounts using accumarray with val = 1.

1-31

1 Alphabetical List

1-32

The sparse function also has accumulation behavior similar to that of accumarray.

* sparse groups data into bins using 2-D subscripts, whereas accumarray groups
data into bins using n-dimensional subscripts.

* For elements with identical subscripts, sparse assigns the sum of those elements
to the output. accumarray does the same by default, but optionally can apply any
function to the bins.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Unless you provide explicit bounds on the accumarray input values, the code
generator may not be able to predetermine the size of the accumarray output.
Therefore, variable-size arrays and dynamic memory allocation must be enabled.

Enumeration inputs are not supported.

The input argument fun must return a full (non-sparse) scalar.

When fun produces a scalar 1-by-1 cell array output:

* The fillval input is required, must be a scalar 1-by-1 cell array, and must contain
the same type as the output of fun contains.

* The order of accumulated values that fun receives as input may not match the
order in MATLAB.

To predetermine the output type for fun, the code generator may call fun before
processing the accumarray input arguments. If the execution of fun causes side
effects, for instance by modifying a global or persistent variable or printing to output,
then the generated code results may differ from MATLAB results.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

accumarray

Usage notes and limitations:

* The fun argument can be @sum (default), @prod, @min, @max, @any, or @all.

* val and fillval must be full (nonsparse) logical or floating-point (double or single)
arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

See Also

full | histcounts | sparse | sum

Introduced before R2006a

1-33

1 Alphabetical List

acCos

Inverse cosine in radians

Syntax

Y = acos(X)

Description

Y = acos(X) returns the “Inverse Cosine” on page 1-37 (cos!) of the elements of X in
radians. The function accepts both real and complex inputs.

* For real values of X in the interval [-1, 1], acos (X) returns values in the interval [0,
.

* For real values of X outside the interval [-1,1] and for complex values of X, acos (X)
returns complex values.

Examples

Inverse Cosine of Value

Find the inverse cosine of a value.

y = acos(0)

1.5708

y

Inverse Cosine of Vector of Complex Values

Find the inverse cosine of the elements of vector x. The acos function acts on x element-
wise.

1-34

acos

X = [0.51 1+3i -2.2+i];
y = acos(x)
y = Ix3 complex

1.5708 - 0.48121i 1.2632 - 1.8642i 2.6799 - 1.54801

Plot Inverse Cosine Function

Plot the inverse cosine function over the intervals -1 < x < 1.
x = -1:.01:1;

plot(x,acos(x))
grid on

1-35

1 Alphabetical List

35 T T T T T T T T T

257 7

05T T

-1 08 06 04 02 0 0.2 0.4 0.6 0.8 1

Input Arguments

X — Cosine of angle
scalar | vector | matrix | multidimensional array

Cosine of angle, specified as a scalar, vector, matrix, or multidimensional array. The acos
operation is element-wise when X is nonscalar.

Data Types: single | double
Complex Number Support: Yes

1-36

acos

Definitions

Inverse Cosine
The inverse cosine is defined as

cos‘l(z) = - ilog[z + i(l - 22)1/2].

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Generates an error during simulation and returns NaN in generated code when the
input value X is real, but the output should be complex. To get the complex result,
make the input value complex by passing in complex(X).

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

» If the output of the function running on the GPU can be complex, then you must
explicitly specify its input arguments as complex. For more information, see “Work
with Complex Numbers on a GPU” (Parallel Computing Toolbox).

1-37

1 Alphabetical List

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays

Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also

acosd | asec | cos | cosd

Introduced in R2006a

1-38

acosd

acosd

Inverse cosine in degrees

Syntax

Y = acosd(X)

Description

Y = acosd(X) returns the inverse cosine (cos!) of the elements of X in degrees. The
function accepts both real and complex inputs.

* For real values of X in the interval [-1, 1], acosd (X) returns values in the interval [0,
180].

» For values of X outside the interval [-1, 1] and for complex values of X, acosd (X)
returns complex values.

Examples

Inverse Cosine of 0

Verify that inverse cosine of 0 is exactly 90.
acosd(0)

ans = 90

Round-Trip Calculation for Complex Angles

Show that the inverse cosine, followed by cosine, returns the original values of X.

cosd(acosd([2 31))

1-39

1 Alphabetical List

1-40

ans = 1x2

acosd([2 3]) returns two complex angles, which are then passed to the cosd function.
cosd returns the original values, 2 and 3.

Input Arguments

X — Cosine of angle
scalar value | vector | matrix | N-D array

Cosine of angle, specified as a real-valued or complex-valued scalar, vector, matrix, or N-D
array. The acosd operation is element-wise when X is non-scalar.

Data Types: single | double
Complex Number Support: Yes

Output Arguments

Y — Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, returned as a real-valued or complex-valued scalar, vector, matrix, or N-
D array of the same size as X.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

acosd

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays

Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also

acos | cos | cosd

Introduced before R2006a

1-41

1 Alphabetical List

acosh

Inverse hyperbolic cosine

Syntax

Y = acosh(X)

Description

Y = acosh(X) returns the inverse hyperbolic cosine for each element of X.

The acosh function operates element-wise on arrays. The function's domains and ranges
include complex values. All angles are in radians.

Examples

Graph of Inverse Hyperbolic Cosine Function

Graph the inverse hyperbolic cosine function over the domain 1 < x < m.

x = 1:pi/40:pi;
plot(x,acosh(x))
grid on
xlabel('x")
ylabel('y")

1-42

acosh

167
1471 ,-*,

1.2 H;f’ 4

o4l / :

0.2 7

Definitions

Inverse Hyperbolic Cosine

For real values x in the domain x > 1, the inverse hyperbolic cosine satisfies

cosh™}(x) = log(x +vx* - 1).

For complex numbers z = x + iy, as well as real values in the domain — « <z < 1, the
call acosh(z) returns complex results.

1-43

1 Alphabetical List

1-44

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Generates an error during simulation and returns NaN in generated code when the
input value X is real, but the output should be complex. To get the complex result,
make the input value complex by passing in complex(x).

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

» If the output of the function running on the GPU can be complex, then you must
explicitly specify its input arguments as complex. For more information, see “Work
with Complex Numbers on a GPU” (Parallel Computing Toolbox).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays

Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

acosh

See Also

acos | asinh | atanh | cosh

Introduced before R2006a

1-45

1 Alphabetical List

1-46

acot

Inverse cotangent in radians

Syntax

Y = acot(X)

Description

Y = acot(X) returns the “Inverse Cotangent” on page 1-49 (cot!) of the elements of X
in radians. The function accepts both real and complex inputs.

* For real values of X, acot (X) returns values in the interval [-11/2, 11/2].
» For complex values of X, acot (X) returns complex values.

Examples

Inverse Cotangent of a Value

Find the inverse cotangent of a value.
acot(2.6)

ans = 0.3672

Inverse Cotangent of a Vector of Complex Values

Find the inverse cotangent of the elements of vector x. The acot function acts on x
element-wise.

[0.51 1+31i -2.2+i];
acot(x)

X
Y

acot

Y = 1Ix3 complex

1.5708 - 0.5493i 0.1093 - 0.3059i -0.3689 - 0.1506i1

Plot the Inverse Cotangent Function

Plot the inverse cotangent function over the intervals —2m < x < 0 and 0 < x < 2m.

x1 = -2*pi:pi/30:-0.1;
x2 = 0.1:pi/30:2%pi;
plot(x1l,acot(x1l),'b")
hold on
plot(x2,acot(x2),'b")
grid on

1-47

1 Alphabetical List

1.5 T T T T T T T

Input Arguments

X — Cotangent of angle
scalar | vector | matrix | multidimensional array

Cotangent of angle, specified as a scalar, vector, matrix, or multidimensional array. The
acot operation is element-wise when X is nonscalar.

Data Types: single | double
Complex Number Support: Yes

1-48

acot

Definitions

Inverse Cotangent

The inverse cotangent is defined as

cot_l(z) = tan~ 1(%) .

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Distributed Arrays

Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

See Also

acotd | atan | cot | cotd

Introduced before R2006a

1-49

1 Alphabetical List

acotd

Inverse cotangent in degrees

Syntax

Y = acotd(X)

Description

Y = acotd(X) returns the inverse cotangent (cot?) of the elements of X in degrees. The
function accepts both real and complex inputs.

* For real values of X, acotd(X) returns values in the range [-90, 90].
* For complex values of X, acotd(X) returns complex values.

Examples

Inverse Cotangent of Vector

x = [0 20 Inf];
y = acotd(x)
y = Ix3
90.0000 2.8624 0

The acotd operation is element-wise when you pass a vector, matrix, or N-D array.

Inverse Cotangent of Complex Value

acotd(1+1)

acotd

ans = 31.7175 - 23.0535i

Input Arguments

X — Cotangent of angle
scalar value | vector | matrix | N-D array

Cotangent of angle, specified as a real-valued or complex-valued scalar, vector, matrix, or
N-D array. The acotd operation is element-wise when X is non-scalar.

Data Types: single | double
Complex Number Support: Yes

Output Arguments

Y — Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, returned as a real-valued or complex-valued scalar, vector, matrix, or N-
D array of the same size as X.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1-51

1 Alphabetical List

1-52

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays

Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also

acot | cot | cotd

Introduced before R2006a

acoth

acoth

Inverse hyperbolic cotangent

Syntax

Y = acoth(X)

Description

Y = acoth(X) returns the inverse hyperbolic cotangent for each element of X.

The acoth function operates element-wise on arrays. The function's domains and ranges
include complex values. All angles are in radians.

Examples

Graph of Inverse Hyperbolic Cotangent Function

Graph the inverse hyperbolic cotangent function over the domains —30 = x < — 1 and
1 <x = 30.

x1 -30:0.1:-1.1;

X2 1.1:0.1:30;
plot(x1l,acoth(x1),x2,acoth(x2))
grid on

xlabel('x")

ylabel('y")

1-53

1 Alphabetical List

-30 -20 -10 0 10 20 30

Definitions

Inverse Hyperbolic Cotangent

For real values x in the domain — « < x < — 1 and 1 < x < », the inverse hyperbolic
cotangent satisfies

1,0\ _ -1y _1
coth “(x) = tanh (;) = 2log(

acoth

For complex numbers z = x + iy as well as real values in the domain —1 < z < 1, the call
acoth(z) returns complex results.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

» If the output of the function running on the GPU can be complex, then you must
explicitly specify its input arguments as complex. For more information, see “Work
with Complex Numbers on a GPU” (Parallel Computing Toolbox).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Distributed Arrays

Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

1-55

1 Alphabetical List

See Also

acosh | acot | asinh | atanh | coth

Introduced before R2006a

1-56

acsc

acCsC

Inverse cosecant in radians

Syntax

Y = acsc(X)

Description

Y = acsc(X) returns the “Inverse Cosecant” on page 1-60 (csc?) of the elements of X
in radians. The function accepts both real and complex inputs.

* For real values of X in the intervals [-», -1] and [1, «], acsc(X) returns real values in
the interval [-11/2, 1/2].

» For real values of X in the interval (-1, 1) and for complex values of X, acsc(X)
returns complex values.

Examples

Inverse Cosecant of a Value

Find the inverse cosecant of a value.
acsc(3)

ans = 0.3398

Inverse Cosecant of a Vector of Complex Angles

Find the inverse cosecant of the elements of vector x. The acsc function acts on x
element-wise.

1-57

1 Alphabetical List

X = [0.51 1+3i -2.2+i];
Y = acsc(x)
Y = 1Ix3 complex

0.0000 - 1.4436i 0.0959 - 0.29701 -0.3795 - 0.18331

Plot the Inverse Cosecant Function

Plot the inverse cosecant function over the intervals —10 = x < — 1 and 1 < x < 10.

x1 = -10:0.01:-1.01;
x2 = 1.01:0.01:10;
plot(xl,acsc(xl),'b")
hold on
plot(x2,acsc(x2),'b")
grid on

1-58

acsc

15 T T T T T T T

Input Arguments

X — Cosecant of angle
scalar | vector | matrix | multidimensional array

10

Cosecant of angle, specified as a scalar, vector, matrix, or multidimensional array. The

acsc operation is element-wise when X is nonscalar.

Data Types: single | double
Complex Number Support: Yes

1-59

1 Alphabetical List

1-60

Definitions

Inverse Cosecant

The inverse cosecant is defined as

csc™l(z) = sin_l(%).

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

’

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

Usage notes and limitations:

» If the output of the function running on the GPU can be complex, then you must
explicitly specify its input arguments as complex. For more information, see “Work
with Complex Numbers on a GPU” (Parallel Computing Toolbox).

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

acsc

Distributed Arrays

Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also

acscd | asec | csc| cscd

Introduced in R2006a

1-61

1 Alphabetical List

acscd

Inverse cosecant in degrees

Syntax

Y = acscd(X)

Description

Y = acscd(X) returns the inverse cosecant (cosec?) of the elements of X in degrees.
The function accepts both real and complex inputs.

* For real values of X in the intervals [-», -1] and [1, «], acscd (X) returns values in the
range [-90, 90].

* For real values of X in the interval (-1, 1) and for complex values of X, acscd (X)
returns complex values.

Examples

Inverse Cosecant of Vector

x = [20 10 Inf]l;
y = acscd(x)
y = 1x3
2.8660 5.7392 0

The acscd operation is element-wise when you pass a vector, matrix, or N-D array.

1-62

acscd

Inverse Cosecant of Complex Value
acscd(1+i)

ans = 25.9136 - 30.4033i

Input Arguments

X — Cosecant of angle
scalar value | vector | matrix | N-D array

Cosecant of angle, specified as a real-valued or complex-valued scalar, vector, matrix, or
N-D array. The acscd operation is element-wise when X is non-scalar.

Data Types: single | double
Complex Number Support: Yes

Output Arguments

Y — Angle in degrees
scalar value | vector | matrix | N-D array

Angle in degrees, returned as a real-valued or complex-valued scalar, vector, matrix, or N-
D array of the same size as X.

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1-63

1 Alphabetical List

1-64

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays

Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also

acsc| csc|cscd

Introduced before R2006a

acsch

acsch

Inverse hyperbolic cosecant

Syntax

Y = acsch(X)

Description

Y = acsch(X) returns the inverse hyperbolic cosecant for each element of X.

The acsch function operates element-wise on arrays. The function's domains and ranges
include complex values. All angles are in radians.

Examples

Graph of Inverse Hyperbolic Cosecant Function

Graph the inverse hyperbolic cosecant function over the domains —20 = x = — 1 and
1 =x<=20.

x1 -20:0.01:-1;

X2 1:0.01:20;
plot(x1l,acsch(xl),x2,acsch(x2))
grid on

xlabel('x")

ylabel('y")

1-65

1 Alphabetical List

0.8 | .

04 1

0.2 -

Definitions

Inverse Hyperbolic Cosecant

For real values x in the domain x < 0 and x > 0, the inverse hyperbolic cosecant satisfies
1, _ o =1(1) _ 1 1
csch “(z) = sinh (E) = log(; + 2 + 1).
For complex numbers 2z = x + iy, the call acsch(z) returns complex results.

1-66

acsch

Extended Capabilities

Tall Arrays

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing
Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB
Functions on a GPU” (Parallel Computing Toolbox).

Distributed Arrays

Partition large arrays across the combined memory of your cluster using Parallel
Computing Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB
Functions with Distributed Arrays” (Parallel Computing Toolbox).

See Also

acosh | acsc|asinh | csch

Introduced before R2006a

1-67

1 Alphabetical List

1-68

actxcontrol

Create Microsoft ActiveX control in figure window

Syntax

¢ = actxcontrol(progid)
C actxcontrol(progid,Name,Value)

Description

c = actxcontrol(progid) creates an ActiveX® control in a figure window. The
programmatic identifier (progid) for the control determines the type of control created.
For the value, see the documentation provided by the control vendor. The returned object
c is the default interface for the control.

You cannot use an ActiveX server for the progid because MATLAB cannot insert ActiveX
servers in a figure. For information about using ActiveX servers, see actxserver.

¢ = actxcontrol(progid,Name,Value) creates a control using name-value pair
arguments.

Examples

Display mwsamp Control Events

c = actxcontrol('mwsamp.mwsampctrl.2',[0 @ 200 200]);
events(c)

Click = void Click()
DblClick = void DblClick()

actxcontrol

MouseDown = void MouseDown(intl6 Button, intl6 Shift, Variant x, Variant y)
Event Args = void Event Args(intl6 typeshort, int32 typelong, double typedouble, ustring typestring, bool typebool)

Input Arguments

progid — Programmatic identifier
string | character vector

Programmatic identifier, specified as a string or a character vector. Get the Programmatic
identifier from the control or server vendor documentation. For the progid values for
MATLAB, see “Programmatic Identifiers”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN, ValueN.

Example: actxcontrol('progid', 'position', [0 O 200 200], 'parent',gcf)

position — Position vector
integer vector

MATLAB position vector specifying the position of the control in an integer vector,
specified as the comma-separated pair consisting of 'position' and an integer vector. The
format is [left, bottom, width, height] using pixel units.

Example: 'position', [0 0 200 200]

parent — Parent figure, model, or Command Window
handle

Parent figure, model, or Command Window, specified as the comma-separated pair
consisting of 'parent' and a handle. This functionality is not supported for figures created
with the uifigure function. For more information, see “Displaying Graphics in App
Designer”.

Example: 'parent',gcf

callback — Name of event handler
string | character vector | cell array of character vectors

1-69

1 Alphabetical List

Name of the event handler, specified as the comma-separated pair consisting of 'callback'
and a string or a character vector, or as a cell array of character vectors. To use the same
handler for all events, specify a single name. To handle specific events, specify a cell
array of event name/event handler pairs.

Example: 'callback',{ Click' 'myClickHandler';'DblClick"
"'myDblClickHandler'; 'MouseDown' 'myMouseDownHandler'

filename — File name
string | character vector

File name, specified as the comma-separated pair consisting of 'filename' and a string or a
character vector, containing the initial conditions of the previously saved control.

licensekey — License key
string | character vector

License key to create licensed ActiveX controls that require design-time licenses,
specified as the comma-separated pair consisting of 'licensekey' and a string or a
character vector. For information on how to use controls that require run-time licenses,
see “Deploy ActiveX Controls Requiring Run-Time Licenses”.

Limitations

» COM functions are available on Microsoft® Windows® systems only.

Tips

* When you no longer need the control, call release to free memory and other
resources used by the interface. Releasing the interface does not delete the control
itself. To release the interface, use the delete function. For an example event handler,
see the file sampev.min the toolbox\matlab\winfun\comcli folder.

» For information about creating Microsoft Forms 2.0 controls in MATLAB or other non-
VBA container applications, see “Microsoft Forms 2.0 Controls”.

See Also

actxserver

actxcontrol

Topics
“Display Message for Workbook OnClose Event”
“COM Event Handlers”

Introduced before R2006a

1-71

1 Alphabetical List

actxcontrollist

List currently installed Microsoft ActiveX controls

Syntax

info = actxcontrollist

Description

info = actxcontrollist returns a list of controls

Examples

Show Information for mwsamp2 Control

MATLAB displays information relevant to your installation.

list = actxcontrollist;
for k = 1l:numel(list)/3
if contains(list{k,1}, 'mwsamp2', 'IgnoreCase',true)
control = sprintf(' Name = %s\n ProgID = %s\n File = %s\n', list{k,:})
break;
end
end

control =
' Name = Mwsamp2 Control
ProgID = MWSAMP.MwsampCtrl.2
File = C:\Program Files\MATLAB\R2017a\toolbox\matlab\winfun\win64\mwsamp2.ocx

Output Arguments

info — Information
cell array of character vectors

1-72

actxcontrollist

Information specified as a 1-by-3 cell array of character vectors containing the name,
programmatic identifier (ProgID), and file name for the control. Each control has one row,
which MATLAB sorts by file name.

Limitations

* COM functions are available on Microsoft Windows systems only.

See Also

actxcontrol | actxcontrolselect

Introduced before R2006a

1-73

1 Alphabetical List

actxcontrolselect

Create Microsoft ActiveX control from UI

Syntax

c = actxcontrolselect
[c, info] = actxcontrolselect

Description

¢ = actxcontrolselect displays a dialog box listing all ActiveX controls installed on
the system and creates the one you select from the list.

[c, info] = actxcontrolselect returns information about the control.

Output Arguments

¢ — COM object
function handle

COM object, returned as a function handle. Use the handle to identify this control when
calling MATLAB COM functions.

info — Information
cell array of character vectors

Information specified as a 1-by-3 cell array of character vectors containing the name,
programmatic identifier (ProgID), and file name for the control.

Limitations

* COM functions are available on Microsoft Windows systems only.

actxcontrolselect

See Also

actxcontrol | actxcontrollist

Topics
“Creating Control Objects Using a UI”

Introduced before R2006a

1-75

1 Alphabetical List

1-76

actxGetRunningServer

Handle to running instance of MATLAB Automation server

Syntax

¢ = actxGetRunningServer(progid)

Description

¢ = actxGetRunningServer(progid) gets a reference to a running instance of the
OLE Automation server. Returns a handle to the default interface of the server.

If the server specified by progid is not currently running or if the server object is not
registered, then the function returns an error. If multiple instances of the server are
running, then the operating system controls the behavior of this function.

Examples

Create List of Excel Property Names

¢ = actxGetRunningServer('Excel.Application');
list = fieldnames(c);

Input Arguments

progid — Programmatic identifier
string | character vector

Programmatic identifier, specified as a string or a character vector.

The control or server vendor documentation specifies the ProgID. For MATLAB progid
values, see “Programmatic Identifiers”.

actxGetRunningServer

Example: 'Matlab.Application’

Output Arguments

¢ — COM object
function handle

COM object, returned as a function handle.

Limitations

* COM functions are available on Microsoft Windows systems only.

See Also

actxcontrol | actxserver

Topics
“MATLAB COM Automation Server Interface”

Introduced in R2007a

1-77

1 Alphabetical List

1-78

actxserver

Create COM server

Syntax
Cc = actxserver(progid)
Cc = actxserver(progid, 'machine',machineName)

Description

C = actxserver(progid) creates a local OLE Automation server, where progid is the
programmatic identifier (ProgID) of an OLE-compliant COM server. The function returns a
handle to the default interface of the server.

For components implemented in a dynamic link library (DLL), actxserver creates an in-
process server. For components implemented as an executable (EXE), actxserver
creates an out-of-process server. You can create out-of-process servers either on the client
system or on any other system on a network that supports DCOM.

Cc = actxserver(progid, 'machine',machineName) creates a server on a remote
computer.

Examples

Display Excel ActivePrinter Property

Create a Microsoft Excel® object and display the ActivePrinter property. MATLAB
displays the value for your system.

e = actxserver('Excel.Application');
get(e, 'ActivePrinter')

ans = \\printers\Copy-F12-South on Ne04:

actxserver

When you are finished with the application, close Excel in MATLAB and delete the server
object.

Quit(e)
delete(e)

Input Arguments

progid — Programmatic identifier
string | character vector

Programmatic identifier, specified as a string or a character vector. The control or server
vendor documentation specifies the ProgID. For MATLAB progid values, see
“Programmatic Identifiers”.

Example: 'Matlab.Application'’

machineName — Remote computer
string | character vector

Name of remote computer on which to start the server, specified as a string or a
character vector.

Example: 'machine', 'mymachine’

Limitations

* COM functions are available on Microsoft Windows systems only.
* 64-bit MATLAB does not support custom interfaces.

* The MATLAB COM Interface does not support invoking functions with optional
parameters.

Tips

* You can register events for COM servers. For more information, see “COM Events”.

1-79

1 Alphabetical List

See Also

actxGetRunningServer | actxcontrol

Topics
“Write Data to Excel Spreadsheet Using ActiveX”
“Read Spreadsheet Data Using Excel as Automation Server”

Introduced before R2006a

1-80

add

add

Package: matlab.mapreduce

Add single key-value pair to KeyValueStore

Syntax

add (KVStore, key, value)

Description

add (KVStore, key, value) adds a single key-value pair to KVStore, which is a
KeyValueStore created during mapreduce execution. Use add in a map or reduce
function written for use with mapreduce to store intermediate or final key-value pair
information.

Examples

Add Key/Value Pairs to KeyValueStore

Use add in map and reduce functions to pass data into the intermediate and final
KeyValueStore. This simple example uses identity map and reduce functions that pass
the inputs straight through to the output.

inds = datastore('airlinesmall.csv', 'SelectedVariableNames', 'ArrDelay', 'TreatAsMissing
preview(inds)

ans=8x1 table
ArrDelay

1-81

1 Alphabetical List

13
4
59
3
11

outds = mapreduce(inds,@myMapper,@myReducer,mapreducer(0));

>k 3k 3k 3k 3k 3kook ok Sk Sk ok Sk 5k 5k 5k 5K 3K 5K 3K 3K K K K K >k >k >k >k kkok sk

* MAPREDUCE PROGRESS *
3k 5k 3k 3k 5k 3k 3k 5k >k 3k 5k 3k ok 3K 3k Sk 3k 3Kk 3k kok >k ko ok >k kok kokok >k
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

readall(outds)
ans=1x2 table
Key Value
"ArrDelay’ [123523x1 double]

function myMapper(data,info,intermkV)
add(intermKV, 'ArrDelay',data.ArrDelay);
end

function myReducer(key,intermVallter,outKV)
data = getnext(intermVallter);
while hasnext(intermVallter)
data = [data; getnext(intermVallter)];
end
add (outKV, key,data) ;
end

1-82

add

Input Arguments

KVStore — Key-value pair storage object
KeyValueStore object

Key-value pair storage object, specified as a KeyValueStore object. The mapreduce
function automatically creates the KeyValueStore object during execution:

* In the map function, the name of the intermediate KeyValueStore object is the third
input argument to the map function, myMapper(data, info, intermKVStore).
Use that same variable name to add intermediate key-value pairs with add or
addmulti in the map function.

* In the reduce function, the name of the final KeyValueStore object is the third input
argument to the reduce function, myReducer(intermKey, intermVallter,
outKVStore). Use that same variable name to add final key-value pairs with add or
addmulti in the reduce function.

For more information, see KeyValueStore.

key — Key
numeric scalar | character vector | string

Key, specified as a numeric scalar, character vector, or string.

All of the keys added by the map function must have the same class. The keys added by
the reduce function also must have the same class, but that class can differ from the class
of the keys added by the map function.

Numeric keys cannot be NaN, complex, logical, or sparse.

Example: add (intermKVStore, 'Sum',sum(X)) adds a key-value pair to an
intermediate KeyValueStore object (named intermKVStore) in a map function.

Example: add (outKVStore, 'Stats', [mean(X) max(X) min(X) var(X) std(X)])
adds a key-value pair to a final KeyValueStore object (named outKVStore) in a reduce
function.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | string

value — Value
any MATLAB object

1-83

1 Alphabetical List

1-84

Value, specified as any MATLAB object. This includes all valid MATLAB data types.

The QutputType argument of mapreduce affects the type of values that the reduce
function can add:

+ Ifthe OutputTypeis 'Binary' (the default), then a value added by the reduce
function can be any MATLAB object.

o Ifthe OutputTypeis 'TabularText', then a value added by the reduce function can
be a numeric scalar, character vector, or string scalar when using the add function.
Additionally, you can use the addmulti function to add multiple values with a numeric
vector, cell vector of character vectors, cell vector of numeric scalars, or string array.
In each case, the numeric values cannot be NaN, complex, logical, or sparse.

Note The above key-value pair requirements may differ when using other products
with mapreduce. See the documentation for the appropriate product to get product-
specific key-value pair requirements.

Example: add (intermKVStore, 'Sum', sum(X)) specifies a single scalar value to pair
with a key.

Example: add (outKVStore, 'Stats', [mean(X) max(X) min(X) var(X) std(X)])
specifies a numeric array as the value to pair with a key.

Tips

* Avoid using add in a loop, as it can negatively affect mapreduce execution time.
Instead, use cell arrays to collect multiple values (using vectorized operations if
possible) and use a single call to addmulti.

See Also
addmulti

Topics
KeyValueStore
“Build Effective Algorithms with MapReduce”

add

Introduced in R2014b

1-85

1 Alphabetical List

1-86

matlab.apputil.create

Create or modify app project file for packaging app into .mlappinstall file using
interactive dialog box

Syntax

matlab.apputil.create
matlab.apputil.create(prjfile)

Description

matlab.apputil.create opens the Package App dialog box that steps you through the
process of creating an .mlappinstall file.

matlab.apputil.create(prjfile) loads the specified .prj file and populates the
Package App dialog box with the information from the specified project file. Use this
option if you need to update an existing app.

Examples

Open Dialog Box for Creating an App Package

matlab.apputil.create

matlab.apputil.create

A\ Package App

Pick main file

Add main function file (program's entry
point).
Add main file

Files included through analysis

These are the files found through
dependency analysis.
Refresh

Shared resources and helper files

Place images, data files, and GUIs (fig
files) here if referenced by any functions.

Also place here:

& Functions called using eval
(and its variants)

@ Functions not on the MATLAB
path

@ Private functions

Add files/folders

Describe your app

& | Aep Name 10
Author Name
Email Select screenshot

Company
Set as default contact

Summary

BIMe=F

Description

h your MATLAB code depends

Add MathWorks products on wi

(= =]=]

Package into installation file

Package

Output folder

Hi\MyApps
Browse

Minimally, add a main file, specify an app name, and indicate the required products.
MATLAB creates and continuously saves a .prj file, regardless of whether you click
Package. However, MATLAB does not create a .mlappinstall file if you do not click

Package.

Update Existing App Package

Assume you have an existing project file, myapp.prj. You want to add a file and update

the description.

Open the Package App dialog box, specifying the previously created .prj file:

matlab.apputil.create('myapp.prj')

1-87

1 Alphabetical List

The dialog box opens populated with the data you previously specified for myapp. Adjust
the information in the dialog box, as needed.

Input Arguments

prjfile — Full or partial path to the .prj file
character vector | string scalar

Full or partial path to the .prj file you created previously with the Package App dialog
box, specified as a character vector or string scalar.

Example: 'C:\myapp.prj'
Example: "C:\myapp.prj"

See Also
matlab.apputil.package

Topics
“MATLAB App Installer File — mlappinstall”

Introduced in R2012b

1-88

matlab.apputil.getinstalledAppinfo

matlab.apputil.getinstalledAppinfo

List installed app information

Syntax

matlab.apputil.getInstalledAppInfo

appinfo = matlab.apputil.getInstalledAppInfo

Description

matlab.apputil.getInstalledAppInfo displays the ID and name of all installed
custom apps. It does not display this information for apps packaged with MathWorks®
products.

appinfo = matlab.apputil.getInstalledAppInfo returns structure to appinfo,
which includes the status, ID, location, and name of all installed custom apps. It does not
return this information for apps packaged with MathWorks products.

Examples

Display Installed Apps Information in the Command Window

Assume you installed two apps, LinePlotter and PlotRandNumbers. Display the app
information in the Command Window.

matlab.apputil.getInstalledAppInfo

ID Name
LinePlotterAPP LinePlotter
PlotRandNumbersAPP PlotRandNumbers

1-89

1 Alphabetical List

1-90

Store Installed App Information in a Variable

Assume you installed an app, ColorPalette. Get the app information and store it in a
variable, myappinfo.

myappinfo = matlab.apputil.getInstalledAppInfo;

Store Installed App Information in a Variable and Display IDs

Assume you installed two apps, LinePlotter and PlotRandNumbers. Get and store the
app information for both installed apps in a variable, myappinfo. Then, get the id for
each app.

myappinfo = matlab.apputil.getInstalledAppInfo

myappinfo
1x2 struct array with fields:
id
name

status
location

Get the id of each installed app:
appids={myappinfo.id}

appids =
'LinePlotterAPP' '"PlotRandNumbersAPP'
Output Arguments

appinfo — Information about installed apps
structure array

Information about the installed app, returned as a structure array, with one element for
each installed app. Each element of the structure array has the following fields:

status — Installation status
"installed'

matlab.apputil.getinstalledAppinfo

Status of the installation, returned as 'installed’.

id — Unique identif